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Abstract— Robust and reliable localization is a fundamental
prerequisite for many applications of mobile robots. Although
there exist many solutions to the localization problem, struc-
turally symmetrical or featureless environments can prevent
different locations from being distinguishable given the data ob-
tained with the robot’s sensors. Such ambiguities typically make
localization approaches more likely to fail. In this paper, we
investigate how artificial landmarks can be utilized to reduce the
ambiguity in the environment. We present a practical approach
to compute a configuration of indistinguishable landmarks
that decreases the overall ambiguity and thus increases the
robustness of the localization process. We evaluate our approach
in different environments based on real data and in simulation. Fig. 1. Ambiguous environments make localization approachee Hiely

Our .reS_U|tS demonstrate that our approach improves the to fail. The image shows a laser range scan (top) andrtiyeprojection
localization performance of the robot and outperforms other  (maximizing over the orientation) of the corresponding otseon likeli-

landmark selection approaches. hood over the pose space (bottom). The darker the color, tgerlahe
observation likelihood at the corresponding pose. As casden there are
I. INTRODUCTION many poses with an associated high observation likelihood.

For reliable navigation a mobile robot needs to be able o _ )
to determine its pose in the environment and accuratefy measure for how distinguishable or unique a pose is. We
track it over time. This is known as the mobile robottn€n present a landmark selection approach that incremen-
localization problem and consists in estimating the pos@lly selects landmark locations, greedily maximizing the
of the robot relative to a given map of the environmen@Verage uniqueness in the environment.
based on sensor data. Although there exist many approached he contribution of this paper is two-fold: First, we presen
that have been successfully applied to the localizatiok, tas? Practical approach to landmark placement that aims at
structurally symmetrical or featureless environments enakMmpProving the localization performance of the robot. Our
these approaches more likely to fail and in the worst cagPProach provides us with both the number and location
prevent the pose of the robot from being uniquely detef landmarks to be placed in the environment. We con-
minable at all. In the context of localization, environmeent Sider indistinguishable landmarks which makes our apgroac
are considered ambiguous if they prevent different robdtitractive from a practical point of view since no land-
poses from being distinguished based on the sensor dafark coding and cqmplex |deqt|f|cat|on system is required.
Figure 1 illustrates such a problem. It shows a typical sens6'S @ second contribution we introduce a measure for the
measurement obtained using a laser range scanner togetffgiuéness of a robot pose based on sensor data. In this
with the corresponding observation likelihood. Dark cetbr WOTk, we seek to improve the localization performance
areas correspond to high likelihood poses. As can be seenff maximizing the average uniqueness in the environment.
the figure, several poses, in addition to the pose from whidpurthermore, we describe a concrete mstan_tlatlon of the
the scan was taken, have a high observation likelihood. !andmark placement problem and show experimentally that

In this paper, we focus on the problem of utilizing artificial®l" @Pproach improves the localization performance of the
landmarks to reduce the ambiguity in the environment. Cof@P0t and outperforms other landmark selection approaches
cretely, we address the problem of finding a configuration Il. RELATED WORK
of indistinguishable landmarks that, when placed in the
environment, increase the robustness in the localizatfon Be
the robot. The basic idea of our approach is that by reducirm
the overall ambiguity in the environment, the Iocalizationat
performance of the robot can be improved. We first introdu

In the past, a huge variety of localization techniques has
en proposed. Several approaches rely on natural fe@tures
e environment [1], [2]. These approaches are partigularl
tractive as they do not require the environment to be mod-
fied. However, inherently ambiguous environments make
All authors are with the University of Freiburg, DepartmehComputer the_s_e_ localization approaches mor? .“_kely tQ fail. umg'
Science, D-79110 Freiburg, Germany. ~artificial landmarks offers the possibility of improvingeth
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Also by the German Research Foundation (DFG) under contrawioar consider artificial landmarks that Can_be lequely 'de_rdlfl_e
SFB/TR 8 and within the Research Training Group 1103. Although such approaches greatly simplify the localizatio



problem, they require a landmark coding and non-trivial bel(xy) = np(z | z¢,m) bel(xy), (2)
identification system. In our work, we therefore considdyon

indistinguishable landmarks. observation and motion model respectively, anté a nor-

The landmark placement problem as addressed in 0I’Halizing constant independent of. Equation (1) is known

work can be formulated as the problem of selecting a subsgé the prediction step of the algorithm and computes the
of landmarks out of a finite set of candidate landmark

. osterior bel(z;) before incorporating the observation.
Sutherland and Thompson [5] where one of the first t . . .
) o ation (2) is called the correction step and computes the
address this problem. They demonstrate that the localizati quation (2) i I b Pu

i . final belief . The key i f MCL i h
error depends on the configuration of the selected IandmarEma beliefbel(z.) e key idea of MCL is to represent the

where p(z; | ¢,m) and p(x; | -1, us) correspond to the

. ; ) lief t of weight I ticles, wh h
Salas and Gordillo [6] propose a simulated annealing tec elie by a set of weighted samples or particles, where eac

: : ' : - article corresponds to a potential pose of the robot.
nigue to find the landmark configuration that maximizes th The MCL algorithm computes the particle set at time
SS".ZG. ofhthedrgﬁlon lfr;)m wh_ere a Iar}dmark can bg SeePeoursively from the particle set at tinte- 1. The algorithm
inriech and Shoval [7] specify a set of constraints abait th jisiajized with a distribution of equally weighted pifes
number of landmarks and their distance to critical Iocaﬁlonaround the initial pose estimate (position tracking), othwi
n thellenvwon?ept, tgnd fort)nrulat(esali?:dlrnzrkdplacement 4% uniform distribution over all possible poses (global leca
a noniinéar optimization probiem. al. [8] decompose ization). Then, a temporary particle set is generated from

the environment into regions from which a minimum numbe_{h? previous set by sampling according to the motion model
of landmarks can be observed. They use a graph-theoretic

X . o ) . T | x¢_1,us). This model describes a posterior densit
formulation to find the decomposition with the minimum® ¢ | @1, ue) P y

. X over possible poses; given the previous pose; ; and
number of regions. All of the above mentioned approacherﬁost recent odometry measurement In a following step,

rely on pure geomedrical reasoning based on trlangulatlo[ﬂe new particles are weighted according to the observation
for estimating the pose of the robot. In contrast to tha odel p(z; | ;,m) that represents the likelihood of the

our approach to landmark selection is tightly coupled with fhost recent observation, given the poser; and the map

rokz)utit, probab|I|s:]|c Ioct?hzatlo:q frafmewor(l;. the localizZ? of the environment. In the final step of the algorithm, the
. er researcners have aiso focused on fthe loca IZPe':sulting particle set is created by drawing particles ftbm
tion performance at the moment of selecting Iandmark§

emporary set in proportion to their weights. This resanmgpli

Thrun [9)], for example, uses a neural network to extrack,, effectively replaces particles with low weights byhig
features from the sensor data and selects the subset of th ght particles

features that minimizes the average posterior localipatio
error. Lerneret al. [10] formulate the problem as a semi- IV. POSE UNIQUENESS

definite programming (SDP) problem and specify a cost Intuitively, the uniqueness of a pose indicates how distin-
function to weight different localization parameters adeo guishable the pose is from all other poses in the state space.
ing to the specific task at hand. Strasddtal [11] use Since the robot perceives its environment through its gsnso
reinforcement learning to obtain an online landmark s@act the uniqueness of a pose is based on the observations of the
policy. The approach of Zhanet al [12] selects, at every robot. Let us assume that the robot is equipped with a perfect
time step, the set of landmarks that minimizes the entropsensor that makes, for a poseand mapm, a deterministic

of the resulting posterior distribution. All of these metiso observationz(z, m). Then we can define theniquenessf
operate online and are concerned with the landmarks thatposex given a mapm as

are observed at every time step during localization. Our 1

approach, in contrast, works in an offline fashion. Further- Uperfec(x,m) = Wv ®)
more, in our work landmarks are physical objects, and not pea I T o
observed features. The main difference between previotid1ere X' represents the state space, and,,(z) is 1 if
approaches and ours is that, by introducing a measure for thgf» ™) = z(z,m) and0 otherwise. The denominator in (3)
uniqueness of a pose and maximizing the overall uniquened§Ply counts the number of poses in the state space where
in the environment, we explicitly consider the symmetriegh® robot makes the same observation as in posglearly,

and ambiguities that can originate when placing landmark€ larger the count, the less unique the pose is. For a
maximally unique pose: it holds thatdz; ,,,(z) = 0 for all

l1l. MONTE CARLO LOCALIZATION i € X\ {z}. A minimally unique pose:, on the other hand,
Throughout this work we use the Monte Carlo localizatioris one for whichdz ,,,(z) = 1 for all z € X.

(MCL) [13] algorithm for estimating the pose of the robot. Since our sensor is noisy, we have to replace the determin-
MCL is a concrete instantiation of the Bayes recursive filteistic functiond;z ,,,(x) in (3) by the likelihood of observing,
that estimates the beliékl(x;) = p(z; | 21.¢, uo..,m) about —at posez, the observation® made atr, i.e., p(z* | Z,m).
the posez; of the robot at timet conditioned on the Furthermore, as we don’t know which measurementve
observations:;.;, odometry measurements.,, and map of will obtain at poser, we have to integrate over all potential
the environmenin. The belief is recursively computed as measurements, i.e., calculate the expectation:

_ 1
bel(zy) = /p(:rt | 21, uy) bel(xy—1) dwy_q Q) Uexp(z,m) = /Z ffcexp(z |7, m) 7 p(z | z,m)dz. (4)




1 Algorithm 1 Incremental Landmark Placement

g o° / \ Require: SetV of N candidate landmarks
g 06 I \ 1. m* =0
s ™ 2: while V # () do
° ooz 3 ' =argmax, U(z, {I} Um*)
%o 20 40 60 80 100 4 a =Ux,{I'} Um*)
selected landmarks [%] 5: |f Vﬂ/ > € then
. R / *
Fig. 2. Normalized average uniqueness as a function of the eumb 6: me= {l },Um
selected landmarks. The right black dot marks the point whHezeaverage I8 V=Y \ {l }
uniqueness reaches its maximum. The left black square inditte¢eaverage  g: else
uniqueness for the number of landmarks selected by our agproac o return m*

As integrating over all measurements is not feasible in
practice, we approximate the outer integraldgp(z,m) by its maximum when approximately half of the candidate

the maximum likelihood value of(z | z,m) and obtain landmarks are selected. Adding further landmarks provides
1 no additional improvement and, as a matter of fact, the
U(x,m) = (5) average uniqueness starts to decrease as further landmarks

Jreap(z™ | 3,m) A7 are selected. In order to determine the number of landmarks
where z** = argmax, p(z | ,m) corresponds to the most to select, we use a heuristic approach based on the gradient
likely observation at pose: given the mapm. The ac- of the average uniqueness. Our landmark placement algo-
curacy of this approximation depends on the distributionthm terminates whenever the gradient drops bellow some
p(z | z,m). If p(z | x,m) is the Dirac density, the approx- specified threshold. The larger the value for the threshold,
imation is exact. In general, the accuracy depends on hdWwe smaller the number of selected landmarks. The average
muchz** dominates the outer integral. A highly unique poseiniqueness is normalized using an instance specific upper
x is typically associated to a peaked distributjgia | z,m) bound in order to use the same threshold for different
that is at its maximum whe@ = x. On the other hand, instances of the problem. Assuming a finite and discrete stat
a flat distribution typically corresponds to an ambiguouspace, the upper bound for the average unigueness is given
environment where, for all the posésin the state space, by 1/ min, p(z** | z,m = () and can be determined before
p(z | &, m) has almost the same value. selecting the first landmark.
The approach proposed in this work is specified in Al-
V. LANDMARK PLACEMENT gorithm 1. Line 3 computes the landmarkthat maximizes
Given a setV of N candidate landmarks, the generalhe average uniquene&§z, {I’}Um*). Line 5 computes the
landmark placement problem consists of finding a configyradient of the average uniqueness’ifvould be selected.
urationm C V of landmarks that maximizes a given targetf the value of the gradient is smaller than the threshold
function. There exist many possible aspects to considenwhe, the algorithm terminates and the final configuratioh is
specifying the target function, like the number of selectegeturned. Otherwise, landmatkis added to the configuration
landmarks and area covered, for example. The target functig,*, removed from the set of candidate landmarks, and the
considered in this work is the average uniqueness value #lgorithm continues and tries to select another landmark.
the environment. Concretely, we look for the configuratiomssuming a finite and discrete state space, the complexity of

m* so that the algorithm isO(K M?) where K < N is the number of
. 1 U d 6 selected landmarks and is the size of the state space. The
mo = argmax (HXH ex (z,m) m) : ®)  factormisa consequence of the computation of the average

L . ) . uniqueness that requires the computation of the uniqueness
By maximizing the average uniqueness in the envwonmerqb(M)) for each state in the state space.
we seek to improve the localization performance of the robo

The_ combinatorial _nature of_the probl_em_ makes the_ enu- VI. EXPERIMENTAL EVALUATION
meration of all possible solutions for finding the optimal
one intractable. However, an approximate solution to (6) To evaluate the improvement in the localization perfor-
can be efficiently computed in an incremental fashion bynance obtained when landmarks were placed according to
successively selecting the landmark that maximizes the awur proposed algorithm, we carried out a set of experiments
erage uniqueness until no further improvement is possiblan simulation and on a real robot. A 2-dimensional occupancy
The main disadvantage of this approach is that it selectgid with a resolution of0.5m was used to represent the
an unnecessarily large number of landmarks. In practicanvironment. The set of candidate landmarks consisted of
experiments we found that approximately 50% of the candall occupied cells in the grid. The sensor used for our
date landmarks are selected before no further improvemesxperiments was a laser range scanner that in addition to
is possible. Figure 2 shows the typical behavior of théhe range and bearing, also returned the reflectivity of the
average unigueness as a function of the number of selecte@asured objects. As landmarks we considered stripes of
landmarks. As can be seen, the average uniqueness reaatet®-reflective tape. Based on the reflectivity we clagsifie
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Fig. 3. Improving the uniqueness in the environment by platamgimarks. The figure shows the uniqueness before and aéteinglthe landmarks for
three different environments. The uniqueness at each pgsejiected onto the grid map by minimizing over the orientatiohe lighter the color, the
higher the uniqueness. Also shown are the landmark confignsabbtained using our approach. The highlighted locaticorrespond to the landmarks.

individual measurements into pure range measurements and T o Tandmarks ——

measurements that correspond to landmarks. contour ! ]
As observation model(z | z,m) we used a variant of the 7 random ===

so-called likelihood field model [14]. In this model, the ind ; 60 .11

vidual range measurements are assumed to be independent ofé “ .

each other. The likelihood of each pure range measurement is
computed according to the distribution(z*) ~ N(d,., o2)
based on the distancd, between the endpoint of the mﬂ
measurement’ and its closest obstacle in the map Here, 2 s e

. R . . time step
N (u,0?) denotes the normal distribution with meanand
standard deviatiom. In the case of landmark measurementsig. 4. Evaluation of the landmark configuration obtainedngsour

the distribution pz(Zi) ~ N(dl 02) is used, whered, approach vs. alternative approaches in the task of glolalifation. The
d he di h l’ ! land ' K in th lots show the fraction of particles within a 1:h radius around the true
enotes the distance to the closest landmark in the m se as a function of time. The values correspond to the meastandard

The likelihood of an observation = (z!,...,2%) is then deviation for different repetitions of the localization.
computed as

N
o

o

(&}

10

to compute the uniqueness for the specific representation.

. ino(s iN(1—s(s Additionally, the computation of the upper bound for the
p(z | z,m) = le(zl)az Ppe()OTED @) average uziqueness ips not strictly necpepssary. Alterngtive
=1 the empirical maximal value can be used instead. The disad-
where vantage of that strategy is that the algorithm can’t stojl unt
5(2) = 1 if 2% corresponds to a landmark 8 the maximal average uniqueness value has been reached.
2= { 0 otherwise. (8)

. o _A. Global Localization
This simple general model does not take visibility constisai

into account and assumes a perfect landmark detection.T0 evaluate the landmark configurations obtained using
However, it can be efficiently evaluated and is sufficient foPur @pproach in the task of global localization, we generate
the purpose of our experiments. 50 different random trajectories for each of the environteen
To compute the uniqueness as specified in (5), the statBOWn in Figure 3. In addition to noise in the range simu-
space ¢-y coordinates and orientatiof) was divided into lations, we also simulated false positives and false negmti
cells of 0.5m and a resolution oH0° was used for the N the landmark detections. The localization algorithm was
orientation. Ray-tracing was used to simulate the moshyike €xecuted 5 times for each trajectory usin@000 particles
observations needed to compute the uniqueness valueRgtially uniformly distributed in the state space. We com-
every pose. Figure 3 shows the landmark configuratior%ared, for the same number of landmarks, the configurations
obtained with our approach for three artificial maps. Als@Ptained with our approactayg y with the configurations
shown in the maps is the uniquenessig space, minimized OPtained with four alternative approaches:
over the orientatiod, before and after placing the landmarks. 1) Uniform contour sampling (contour)Distributes the

As thresholde in our landmark placement algorithm we set landmarks roughly uniformly throughout the contours
the minimum value of the gradient tb. For our specific of the environment. The first landmark is randomly
sensor model (7), a theoretical upper bound for the average selected from the set of candidate landmarks. Addi-
uniqueness is given by/ ¥/2ro2, wheres = max(o,., 0;). tional landmarks are selected by choosing the candi-

Note that the approach presented in this paper is not re- date landmark closest to the previously selected one
stricted to grid-based representations, it only requiresg until no more landmarks can be selected. Every time a



landmark is selected, all landmarks within a specified
radius are removed from the set of candidates. This
radius is chosen so that the sampling approximately &0
covers the whole map.

2) Uniform space sampling (space)istributes the land-
marks roughly uniformly throughout the environment.
This approach divides the environment into squared re- 20 :
gions of equal size and selects the candidate landmark o L —Zime siens 3 lime steps 10 (e Steps mm—1
closest to the center of each non-empty region. 0 % oo Iai‘émarks o S 100

3) Random sampling (randomistributes the landmarks
randomly throughout the contours of the environmentig. 5.  Global localization performance as a function of thember of

Landmarks are randomly selected from the set of cargelected landmarks. The plots show the fraction of partisiéisin a 1.5m
dius around the true pose of the robot after 2, 3, and 10 tieess

. . . It
didate Iandmark_s. _Every tlm_e_ a Iand_mark 1S SeIeCteGﬁwe values correspond to the mean and standard deviationifferedt
all landmarks within a specified radius are removedepetitions of the experiment. The number of landmarks salelote our
from the set of candidates. approach £ 10%) is indicated by the vertical line.

4) Maximize the minimal uniqueness (min the ap- alues corresponding to the number of landmarks selected

proach described in Algorithm 1 was modified so thagy our gradient-based heuristie-( 10%) when using a

It.WOUId ma>i|m|ze the minimm uniqueness n the “Mihreshold ofl. This corresponds to 45° positive gradient.
vironmentm* = argmax,,, cy, (min/(z,m)), instead

of maximizing the average unigueness The motivation for choosing this value is that_ increasing

' the percentage of selected landmarks 15y provides less
The results of the experiment for one of the environment§ian al% increment in the normalized average uniqueness.
(leftmost in Figure 3) are shown in Figure 4. As performanc&/sing a different value for the threshold, or weighting
metric for the global localization task we considered thélifferently the parameters (average uniqueness vs. dracfi
fraction of particles within al.5m radius around the true Selected landmarks) the number of selected landmarks can be
pose after 2, 3, 4, 5 and 10 integrations of measuremerfig@ntrolled. As can be seen in Figure 5 selecting more land-
(t|me Steps)_ The values Correspond to the mean and Stéﬁarks does not prOVide an improvemeﬂt in the localization
dard deviation for the different trajectories and runs & thPerformance. Furthermore, the number of landmarks selecte
localization. As can be seen in the figure, the configuratiol§ Well beyond the point where fewer landmarks would cause
obtained by our method improves the global localizatiohe localization performance to decrease drastically.
performance best since particles are more quickly conngrgi  An additional result of this experiment is that, as can be
towards the true pose of the robot. A t-test showed th&een in the figure, the behavior of the localization perfor-
the improvement was significant on the= 0.05 level for mance as a function of the number of selected landmarks
all the evaluated environments, time steps and alternatii@ similar to the behavior of the average uniqueness (see
approaches. Clearly, the amount of improvement obtainabfégure 2). This experimental result suggests a direct conne
depends on the inherent uniqueness of the environmetign between the average uniqueness in the environment and
A larger improvement can be obtained for inherently amlocalization performance.
biguous environments (leftmost one in Figure 3) than for
inherently unique environments (rightmost one in Figure 3C. Real Data

The first 3 alternative approachemntour, space andran- We also evaluated our approach using data gathered with
dom are simple and fast, but do not take into account thg \obileRobots Pioneer P3-DX robot equipped with a SICK
ambiguities that can originate when selecting landmarks, a| \1s 291 laser range finder. We steered the robot through one
the resulting landmark configurations are therefore not asg ihe buildings at our campus and created an occupancy map
gooo_l for improving the localization performance as the oness the environment using a standard SLAM technique [15].
obtained with our approach. The fourth approaoim u has  The environment consisted of a long, featureless corridlor o
the_property Fhat a lower bound for the_ uniqueness in th§pproximately80 x 3m size. Figure 6 shows the landmark
environment is guaranteed. However, this does not providgnfiguration obtained using our approach. In order to make
a significant improvement in the localization performance. ihe environment more ambiguous, range measurements larger
than10 m where disregarded. For building the map, however,
the full 80 m depth range of the laser scanner was used. The
The goal of this experiment was to evaluate the pemap resolution and state space discretization are deddribe
formance of our gradient-based heuristic when determirsection VI. As landmarks, stripes of retro-reflective miater
ing automatically the number of landmarks to be placedvere taped to the walls in the locations indicated by our
Figure 5 shows the fraction of particles within la5m  approach. We used a threshold on the reflectivity value to
radius around the true pose of the robot after 2, 3, and Xdassify the laser measurements caused by the landmarks.
integrations of measurements as a function of the numberAfter placing the landmarks, we steered the robot again
of selected landmarks. Also indicated in the figure are théarough the environment and used the above mentioned
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Fig. 6. Landmark configuration and uniqueness before and pléeing
the landmarks for theuilding 103data set gathered with a real robot using

a laser range scanner.
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Fig. 7. Global localization performance for theilding 103data set. The
plots show the fraction of particles within a 1xb radius of the true pose
of the robot as a function of time. Also shown are the resultsiobd in

simulation im).

SLAM technique to obtain an approximated ground truth
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Fig. 8. Average localization error during position traakinith and without
utilizing landmarks for thebuilding 103data set.

from a set of candidate locations and thereby maximizes
the average uniqueness in the environment. Furthermore, we
described a concrete application in the context of loctitima
with laser range scanners given a grid-based represantatio
of the environment. We evaluated our approach for different
environments in simulation and using real data. The results
demonstrate that our approach yields substantial improve-
ments in the localization performance.
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